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Abstract Burgers equation ut = 2uux +uxx describes a lot of phenomena in physics fields, and it has attracted much
attention. In this paper, the Burgers equation is generalized to (2+1) dimensions. By means of the Painlevé analysis, the
most generalized Painlevé integrable (2+1)-dimensional integrable Burgers systems are obtained. Some exact solutions
of the generalized Burgers system are obtained via variable separation approach.
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1 Introduction
The Burgers equation ut = 2uux + uxx has attracted

much attention since it was first proposed by Bateman.[1]
Then Burgers[2] gave its some special solutions in 1940.
Later on, Cole and Hopf[3,4] independently pointed out
that any of the solutions of the heat equation ξt = ξxx

can be mapped to a solution of the Burgers equation. Re-
cently, the Painlev́e property (PP) has shown its useful-
ness in studying of partial differential equation (PDE),
especially in the sense of integrability. Some connections
of PP with inverse scattering transform (IST) were found.
Through Painlev́e analysis for an integrable model, we
could probably find its various interesting properties like
the Lax pairs.[5−7] In this paper, we would like to find
(2 + 1)-dimensional Burgers equations which are Painlev́e
integrable, and then use the variable separation approach
to get some of their solutions.

2 Generalized Burgers Equations
The most generalized Burgers equation may have the

form
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where ai, bi, and ci are all constants, which means that
we are finding constant coefficient integrable models of
Burger’s type.

To check whether the given equations have Painlev́e
property, we have several choices, such as ARS (Ablowitz–
Ramani–Segur) algorithm,[8] the WTC (Weiss–Tabor–
Carnevale) approach,[9] Kruskal’s simplification,[10] the
Conte’s invariant method,[5] Pickering’s approach,[7] and

Lou’s extended method.[11] Here we used WTC approach
to analyse the equations.

As usual, we use a simple three-step version to find the
possible models which have PP.

(i) Leading order analysis. Letting

u = φα
∞∑

j=0

ujφ
j , (3)

v = φβ
∞∑

j=0

vjφ
j , (4)

and substituting them into Eqs. (1) and (2) and balanc-
ing the leading nonlinear and leading dispersive terms, we
could easily get α = β = −1.

(ii) To find the resonance points. Because we are
treating them as the Burger’s type equation, we sup-
pose that both a1 and a2 are not equal to zero. And
the generalized (2+1)-dimensional Burgers equations have
the resonance points which the original Burgers equation
ut = 2uux +uxx has. That means the generalized Burgers
equations must have the resonance points at j = 2. Us-
ing the computer algebra such as Maple, we found that
there are several cases in which the generalized (2+1)-
dimensional Burgers equations are Painlev́e integrable.
And the resonance points are j = 2, j = 1 and j = −1.
Because of the complexity of the results, we do not write
them down here.

(iii) To check if the compatibility at the resonance
points holds, by which we mean that u1, u2 and φ must
be arbitrary.

After finishing the above three steps and using re-
scaling procedure, we get the final nontrivial generalized
(2+1)-dimensional Painlev́e integrable Burgers equations

ut = a1uux + a2uxx + b1vvx +
a2b1

a1
vxy , uy = vx . (5)

3 Some Solutions of Generalized Burgers
Equations
Now we try to find some solutions of Eq. (5) through

the variable separation approach.[11] We rewrite Eq. (5)
as

ut = A1uux + A2uxx + B1vvx +
A2B1

A1
vxy ,
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uy = vx . (6)
The first step of the approach is to suppose that u and v
take the following forms
u = 2(A2/A1) ln(f)x+u0 , v = 2(A2/A1) ln(f)y+v0 , (7)
which can be found from the truncated Painlevé ex-
pansion, where u0, v0 are arbitrary known solutions of
Eqs. (6). Here, however, we take u0 = 0 and v0 = v0(y, t)

for simplicity. The function v0 is an arbitrary function of
the indicated variables.

Then we suppose that f has the form
f = 1 + a1p(x, t) + a2q(y, t) + Ap(x, t)q(y, t) , (8)

where a1, a2 and A are constants to be determined; p(x, t)
and q(y, t) are at present supposed to be arbitrary. Sub-
stituting Eqs. (7) with Eq. (8) into Eqs. (6) yields

0 = 2A2(−A1A
2pxq2 −A1a

2
1px − 2A1a1pxAq)pt + 2A2(A1Apx − a1A1pxa2)qt

+ 2A2(2a1A1Aqp + A1Aq2a2 + A1a
2
1p + a1A1 + a1A1a2q + A1Aq + A1A

2q2p)pxt

+ 2A2(a2A2A1Aq2 + A2A1A
2q2p + 2A2a1A1Apq + a2a1A1 + a2A2a1A1q + A2A1Aq + A2A1a

2
1p)pxxx

+ 2A2(−A2A1A
2pxq2 −A2A1a

2
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+ 2A2(−A2a2B1a1px + A2B1Apx)qyy + 2A2(−B1A1a1a2pxqy + B1A1Apxqy)v0 . (9)

Using the computer algebras such as Maple or Mathemat-
ica, we get

0 = 2JA1A2(−Jpx + f∂x)(pt + A2pxx)
− 2A2Kpx(A2B1qyy + A1qt + A1B1qyv0) , (10)

where J = Aq + a1 and K = a1a2 − A. Because p is y-
independent and q is x-independent, equation (10) can be
separated into two parts,

pt + A2pxx = d2p
2 + d1p + d0 , (11)

A2B1qyy + A1qt + A1B1qyv0 = c2q
2 + c1q + c0 . (12)

Substituting Eqs. (11) and (12) into Eq. (10), we can de-
termine the values of ci and di. There are two cases. The
first one is

d2 = 0 , d0 = d1/a1 , A = a1a2 (13)
with a1, a2, c0(y, t), c1(y, t), c2(y, t), and d1(t) being ar-
bitrary constants/functions with indicated variables. The
second one is

d2 = 0 , c1 = (2a1c2 −A1Ad1)/A ,

d0 = (A1Aa2d1 − a1a2c2 + Ac2)/A1A
2 ,

c0 = a1(a1c2 −A1Ad1)/A2 (14)
with A, a1, a2, and c2(t) and d1(t) being arbitrary.

Both v0(y, t) and q(y, t) are previously supposed to be
arbitrary of the indicated variables. But from Eq. (12) we
know that we must fix one of them, say v0, and let the
other be free. Hence, we obtain a solution of the general-
ized Burgers equation (6) with q(y, t) being arbitrary

u =
2A2

A1

px(a1 + Aq)
(1 + a1p + a2q + Apq)

,

v =
2A2

A1

qy(a2 + Ap)
(1 + a1p + a2q + Apq)

+ v0 , (15)

where p must satisfy Eq. (11) while v0 is determined by
q(y, t) and ci (i = 0, 1, 2) according to Eq. (12).

4 Summary and Discussion
In summary, using the WTC method, we obtained

the most generalized (2 + 1)-dimensional constant coef-
ficients Burgers equations which have Painlev́e property
(Painlev́e integrable). Then with the help of Lou’s sep-
aration method,[12] we get solutions with some arbitrary
functions. As in the articles,[12] by fixing these arbitrary
functions, we could get some interesting special solutions.
We leave it undone because of two points. First, there are
complete details in how to select functions to get inter-
esting different solutions, which show the probable con-
nections between non-integrable systems and integrable
systems. Second, those who are at liberation know better
how to fix the arbitrary functions to explain phenomena
in experiments.

The next question is what type of partial differential
equations can be separated in Lou’s method to get solu-
tions with arbitrary functions. This is investigated now
by a group under professor S.Y. Lou. Another question is
why those equations can be separated in this way. What
is the mathematical or physical reasons? It deserves con-
sideration.
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